ОДНИМ РОСЧЕРКОМ
Задача о Кенигсбергских мостах
Внимание гениального математика Эйлера привлекла однажды: своеобразная задача, которую он высказал в такой форме:
«В Кенигсберге есть остров, называемый Кнейпгоф. Река, омывающая его, делится на два рукава (см. рис. ), через которые перекинуто семь мостов:
„Можно ли обойти все эти мосты не побывав ни на одном из них более раза?“
„Некоторое утверждают, что это возможно. Другие, напротив, находят такое требование неосуществимым“».
Каково же ваше мнение, читатель?
Что такое топология?
Задаче о Кенигсбергских мостах Эйлер посвятил целое математическое исследование, которое было в 1736 г. представлено в Петербургскую Академию наук. Работа эта начинается следующими строками, определяющими, к какой области математики относятся подобные вопросы:
«Недавно мне пришлось слышать об одной задаче, относящейся к геометрии положения, и я решил изложить здесь, в виде примера найденный мною способ решения этой задачи».
Эйлер имеет в виду задачу о Кенигсбергских мостах.
Рассуждений великого математика мы здесь излагать не станем, а ограничимся сейчас краткими соображениями, подтверждающими его окончательный вывод. Он состоит в том, что требуемый задачей обход невыполним.
Разбор задачи
Для наглядности заменим рисунок расположения речных рукавов упрощенной схемой (см.
рис. ). В предложенной задаче размер острова и длина мостов никакого значения не имеет (такова, мы знаем, характерная особенность всех топологических задач: они не зависят от относительных размеров частей фигуры).Поэтому мы можем местности
Покажем, что фигуру нашу начертить одним росчерком нельзя. В самом деле, в каждую из узловых точек
Семь задач