В учебном пособии излагаются положения теории и методы интегрирования дифференциальных уравнений Пфаффа на плоскости и в пространстве. Обычно уравнения Пфаффа на плоскости называют обыкновенными дифференциальными уравнениями первого порядка в симметричной форме. В отличие от общепринятого, подход к изложению материала основан на понимании решения как параметризованной кривой или поверхности. Излагаются различные методы построения интегральных поверхностей, сопровождаемые рассмотрением примеров. ...
В учебном пособии излагаются положения теории и методы интегрирования дифференциальных уравнений Пфаффа на плоскости и в пространстве. Обычно уравнения Пфаффа на плоскости называют обыкновенными дифференциальными уравнениями первого порядка в симметричной форме. В отличие от общепринятого, подход к изложению материала основан на понимании решения как параметризованной кривой или поверхности.
Излагаются различные методы построения интегральных поверхностей, сопровождаемые рассмотрением примеров. Кроме того, пособие содержит представляющие значительный интерес исследования Л. Эйлера дифференциального уравнения Пфаффа с тремя переменными.
Пособие предназначено для студентов направлений подготовки и специальностей, входящих в УГСН: "Математика и механика", "Компьютерные и информационные науки", "Физика и астрономия", а также преподавателей физико-математических отделений университетов. Книга «Дифференциальные уравнения Пфаффа на плоскости и в пространстве. Учебное пособие» авторов Юрий Бибиков, Букаты Вероника Ромуальдовна оценена посетителями КнигоГид, и её читательский рейтинг составил 0.00 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Рецензии на книгу
Написано 0 рецензий